On shifted intersecting families with respect to posets

نویسنده

  • Morimasa Tsuchiya
چکیده

In this paper, we show that for a shifted complex :Jr ~ 2 with respect to a poset P with minimum element 0 and an intersecting subfamily ~ ~ :Jr, #~ ~ #{FE:Jr;OEF}. We denote the set {1,2, .. ,n} by [n], the family of all subsets of a set X by 2x , #F denotes the number of elements of a set F. Let :Jr be a family of subsets of [n], i.e., :Jr = {F1, .. ,Fm } where F1 Fm are distinct subsets of [n]. A family g, is intersecting if for every F i , Fj E :Jr, Fi () Fj '* 0. For families ~, g, S;;; 2[n], ~ and :Jr are cross-intersecting if G () F '* 0 for V G E ~ and V F E :Jr. A family :Jr ~ 2[n] is called a complex if G S;;; F E g, implies G E :Jr. We already know the following results. For an intersecting family :Jr S;;; 2[n J, #:Jr ~ 2n1 ([1]) and for a complex :Jr S;;; 2[n] and cross-intersecting subfamilies ~, Je ~ :Jr, #~ + #Je ~ # g, ([4]). For F, G ~ [n], if there exists a one-to-one mapping I: F --> G with x ~ I(x) for each x E F, then we write F ~ G. :Jr ~ 2[n] Australasian Journal of Combinatorics ~ ( 1992 L pp. 53-58

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Order dense injectivity of $S$-posets

‎‎‎In this paper‎, ‎the‎ notion of injectivity with respect to order dense embeddings in ‎‎the category of $S$-posets‎, ‎posets with a monotone action of a‎ pomonoid $S$ on them‎, ‎is studied‎. ‎We give a criterion‎, ‎like the Baer condition for injectivity of modules‎, ‎or Skornjakov criterion for injectivity of $S$-sets‎, ‎for the order dense injectivity‎. ‎Also‎, ‎we consider such injectivit...

متن کامل

Meet-continuity on $L$-directed Complete Posets

In this paper, the definition of meet-continuity on $L$-directedcomplete posets (for short, $L$-dcpos) is introduced. As ageneralization of meet-continuity on crisp dcpos, meet-continuity on$L$-dcpos, based on the generalized Scott topology, ischaracterized. In particular, it is shown that every continuous$L$-dcpo is meet-continuous and $L$-continuous retracts ofmeet-continuous $L$-dcpos are al...

متن کامل

The Typical Structure of Intersecting Families

When t = 1, we simply say that the family is intersecting. Consider the following example. Fix a t-set, say I ⊆ [n], and values {xi : i ∈ I}. If for every σ ∈ F and i ∈ I σ(i) = xi, then F is clearly t-intersecting. Furthermore, we say that F is a trivial t-intersecting family of permutations. Note that the size of this family is at most (n − t)!. Ellis, Friedgut, and Pilpel [5] show that for n...

متن کامل

Erdös-Ko-Rado and Hilton-Milner Type Theorems for Intersecting Chains in Posets

We prove Erdős-Ko-Rado and Hilton-Milner type theorems for t-intersecting k-chains in posets using the kernel method. These results are common generalizations of the original EKR and HM theorems, and our earlier results for intersecting k-chains in the Boolean algebra. For intersecting k-chains in the c-truncated Boolean algebra we also prove an exact EKR theorem (for all n) using the shift met...

متن کامل

Some drifts on posets and its application to fuzzy subalgebras

In this paper, given a poset $(X,leq)$, we introduce some  drifts on a groupoid $(X,*)$ with respect to $(X,leq)$, and we obtain several properties of these drifts related to the notion of $Bin(X)$. We discuss some connections between fuzzy subalgebras and upward drifts.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Australasian J. Combinatorics

دوره 5  شماره 

صفحات  -

تاریخ انتشار 1992